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Space Administration

RHA Definition and Consideration

RHA consists of all activities undertaken to ensure that the electronics
and materials of a space system perform to their design specifications
after exposure to the mission space environment.

The subset of interests for NEPP and the REAG, are EEE parts. It is
important to register that all of these undertakings are in a feedback
loop and require constant iteration and updating throughout the
mission life. More detail can be found in the reference materials on
applicable test data for usage on parts.

Reference Materials

Heavily Relied Upon Documentation for RHA

NASA Documents
Guidelines and Lessons Learned found on radhome

Military Performance Specifications
19500, 38510, 38534, 38535
Military Handbooks
814,815,816,817,339
Military Test Methods
MIL-STD-750, MIL-STD-883
DTRA Documents

DNA-H-93-52, DNA-H-95-61, DNA-H-93-140
ASTM Standards By Subcommittee
F1.11, E10.07, E13.09
EIA/JEDEC Test Methods and Guides
JESD57, JESD89, JEP133, FOTP-64
ESA Test Methods and Guides
ESA/SCC No. 22900 and 25100, ESA PSS-01-609

Often Utilized Tools

Radiation Databases
GSFC radhome, JPL radcentral, ESA escies
Environment Modeling
SPENVIS, CREME, OMERE, NOVICE
Radiation effects in devices/materials
CREME, MRED, GEANT, SRIM, MULASSIS
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Drivers for a new approach
and Future Considerations

Varied Missions — National Assets to CubeSats

Risk Tolerant vs. Risk Avoidance

Low budget, shortened schedule
Short mission duration

High data rates

On board processing
Multi-instrument dependent datasets

Data continuity from one satellite to the next

Emerging Technologies and
COTS parts usage increasing

System on a chip solutions, COTS parts are
meeting complex needs

Highly coveted performance

3D structures

Complex radiation response
Experimentation cannot cover state space

Define the Radiation Requirements Requirements

* System Requirements

* Subsystem functionality

* Flow down to
modules/parts

* Technology Selection
* Part Selection

* Fault Tolerance

* Bias/operating
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Evaluate Design

* Mission

» Trajectory and timing * Specific to Box

Requirements need to be written and incorporated into mission documents The requirements need to be understood in the context of mission success and then
such that they are able to flow down from mission level to subsystem and then updated and applied such that meeting those requirements provides assurance to a
to the parts selection. These requirements are determined from the hazard working system in the intended environment. This is iterated throughout mission
definition and evaluation. design lifecycle to build a set of requirements that are useful, driving cost and

schedule.

Evaluate the Operational Requirements

i

*Science Critical
*Telemetry

* Deratings
* Biases
* Speeds

» Parameter decline
* Timing slows

Sub-system System

Parts

. *Power Schemes
Upset Rates » Error Detection and «Resets

* Transients Correction *Refresh

w » Filtering

Acronyms

Parts’ Response

System Impact

Evaluate the Design
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Transients shown with statistics can help

designers what to expect and mitigate
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Extended response of device upsets when run through system
configuration

3D Three Dimensional

ASTM American Society for Testing and Materials
CDR Critical Design Review

COTS Commercial-Off-The-Shelf

CREME Cosmic Ray Effects on Micro-Electronics
DD Displacement Damage

DTRA Defense Threat Reduction Agency

EEE Electrical, Electronic andd Electromechanical
EIA Electronic Industries Alliance

ELDRS Enhanced Low Dose Rate Sensitive

ESA European Space Agency

ETW Electronics and Technology Workshop
FETs Field Effect Transistor

GSFC Goddard Space Flight Center

JEDEC Joint Electron Device Engineering Council
JPL Jet Propulsion Laboratory

LET Linear Energy Transfer

MOSFETs Metal Oxide Semiconductor Field Effect Transistor
NASA National Aeronautics and Space Administration
NEPP NASAS Electronics Parts and Packaging
PDR Preliminary Design Review

REAG Radiation Effects and Analysis Group

RHA Radiation Hardness Assurance

RLAT Radiation Lot Acceptance Testing

SCC Space Components Coordination Group
SEB Single Event Burnout

SEE Single Event Effects

SEFI Single Event Functional Interrupt

SEGR Single Event Gate Rupture

SEL Single Event Latchup

SER Single Event Rate

SET Single Event Transient

SEU Single Event Upset

TID Total lonizing Dose

Mission Timeline and Deliverables
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